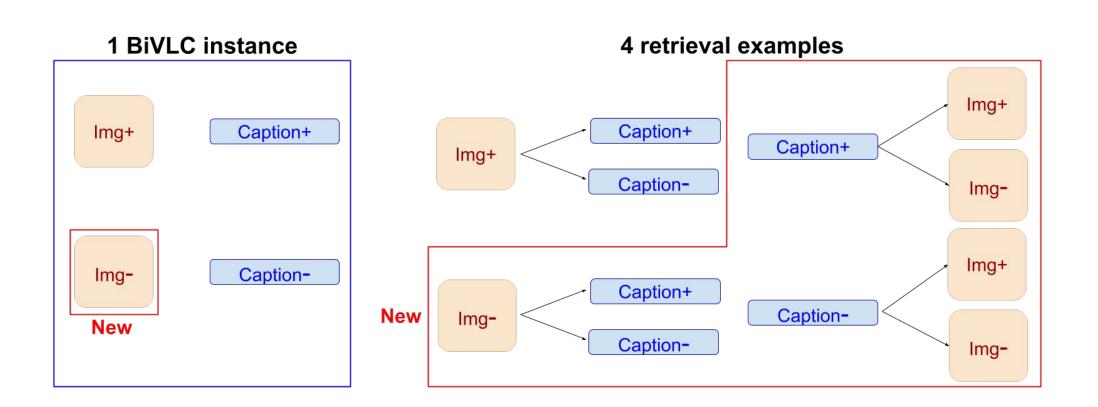


Hizkuntza Teknologiako Zentroa **Basque Center for Language Technology**

Euskal Herriko

Motivation

Previous datasets focused mainly on image-to-text retrieval. Why don't we include text-to-image retrieval also?



What is **BiVLC**?

BiVLC is a **Bi**directional **V**ision-Language **C**ompositionality dataset with almost 3k instances formed by 2 images and 2 captions.

Dataset	I2T	T2I	REPLACE		SWAP			ADD		Total	
			OBJ	ATT	Rel	Obj	ATT	Rel	Obj	ATT	Total
Winoground	\checkmark	\checkmark				668		1,036			1,600†
SUGARCREPE	\checkmark		1,652	788	1,406	246	666		2,062	692	7,512
BIVLC (ours)	\checkmark	\checkmark	4,800	1,748	1,848	324	1,112		1,596	304	11,732

Highlights

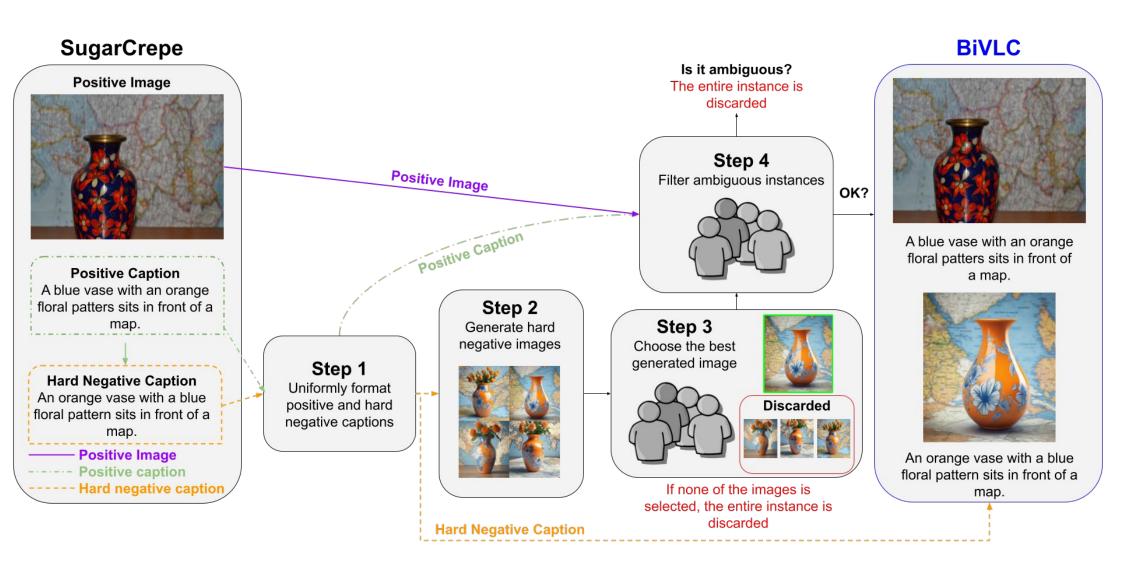
- The largest I2T and T2I compositionality dataset.
- A new semi-automatic dataset construction method.

BiVLC: Extending Vision-Language Compositionality Evaluation with Text-to-Image Retrieval

Imanol Miranda, Ander Salaberria, Eneko Agirre, Gorka Azkune HiTZ Center – Ixa, University of the Basque Country (UPV/EHU)

How is BiVLC constructed?

We propose a semi-automatic dataset construction method:



Findings with BiVLC

We evaluated SOTA models in SugarCrepe and BiVLC divided into Contrastive and Generative.

	Madal	Params		BIVLC			
	Model		SUGARCREPE	I2T	T2I	Group	
	Human	N/A	98.93	90.40	93.00	86.80	
	Random	N/A	50.00	25.00	25.00	16.67	
	CLIP		76.56	75.83	52.40	49.06	
Contractive	CLIP _{COCO}	151M	84.66	82.75	63.89	60.96	
Contrastive	NEGCLIP		85.64	80.74	61.95	58.75	
	GNM		81.83	81.32	60.86	57.96	
Generative	Open CapPa	676M	90.59	57.72	56.19	41.97	
	VQAScore-XL	3B	90.85	81.96	76.61	70.20	
	VQAScore-XXL	11 B	93.72	86.16	81.93	76.47	

Finding 1: Current models underperform on text-to-image retrieval. Finding 2: The gap to humans is bigger in BiVLC than in SugarCrepe. Finding 3: SugarCrepe and BiVLC performance are not correlated.

- BiVLC offers a more complete view of compositionality skills.
- Multimodal models lag behind humans by a large margin.

Exploring training strategies

We propose two new models:

- **1.** CLIP_{TROHN-TEXT} using hard negative texts.
- 2. CLIP_{TROHN-IMG} using hard negative texts and images.

Model	SUGARCREPE	I2T	BIVLC T2I	Group
Random	50.00	25.00	25.00	16.67
CLIP	76.56	75.83	52.40	49.06
CLIP _{COCO}	84.66	<u>82.75</u>	<u>63.89</u>	<u>60.96</u>
NEGCLIP	85.64	80.74	61.95	58.75
GNM	81.83	81.32	60.86	57.96
CLIP _{TROHN-Text}	93.40	78.18	62.19	57.48
CLIP _{TROHN-Img}	<u>89.40</u>	88.54	71.84	69.25

Finding 4: Training with hard negative images can boost the performance of multimodal contrastive models.

Are our models cheating?

We develop two new systems which are trained to detect synthetic and natural images and captions: **CLIP**_{Det}, based on original pretrained CLIP encoders and **CLIP_{TROHN-IMG/Det}**, our CLIP_{TROHN-IMG} model encoders.

Model	Text detection acc	Img detection acc	I2T	T2I	Group
Random	50.00	50.00	25.00	25.00	16.67
CLIP _{Det} CLIP _{TROHN-IMG} /Det	57.00 61.34	100.00 100.00	00.07	19.64 26.42	19.64 26.42

Finding 5: Distinguishing between natural and synthetic inputs is not enough to perform well in BiVLC. Finding 6: I2T is more sensitive to natural vs synthetic.

Contact

• **by email** {imanol.miranda, ander.salaberria, e.agirre, gorka.azcune}@ehu.eus • X @I MirandaM @AnderSala @eagirre @gazkune

Project page https://imirandam.github.io/BiVLC project page